remove mirror from augmentation for step three

main
v-h 2 years ago
parent 4e3e385e18
commit bc52bd699b

@ -207,31 +207,4 @@ grid on
title(sprintf('Average Precision = %.2f', ap))
% ----- Helper functions
% function data = augmentData(data)
% % Randomly flip images and bounding boxes horizontally.
% tform = randomAffine2d('XReflection',true);
% sz = size(data{1});
% rout = affineOutputView(sz,tform);
% data{1} = imwarp(data{1},tform,'OutputView',rout);
%
% % Sanitize box data, if needed.
% data{2} = helperSanitizeBoxes(data{2}, sz);
%
% % Warp boxes.
% data{2} = bboxwarp(data{2},tform,rout);
% end
%
% function data = preprocessData(data,targetSize)
% % Resize image and bounding boxes to targetSize.
% sz = size(data{1},[1 2]);
% scale = targetSize(1:2)./sz;
% data{1} = imresize(data{1},targetSize(1:2));
%
% % Sanitize box data, if needed.
% data{2} = helperSanitizeBoxes(data{2}, sz);
%
% % Resize boxes.
% data{2} = bboxresize(data{2},scale);
% end

@ -33,13 +33,12 @@
% adjustable parameters
% - if there is no trained net, it can be trained with this script:
% set doTraining to true
% - the training can use augmentation or not:
% set doAugmentation accordingly
close all;
clear;
doTraining = false;
doTraining = true;
% first we need the data...
dataDir = 'Picturedata'; % Destination-Folder for provided (img) Data
@ -103,17 +102,6 @@ inputSize = [224 224 3];
preprocessedTrainingData = transform(trainingData, @(data)preprocessData(data,inputSize));
% Achtung: dieser DS wird nur zur Ermittlung der BoundingBoxes verwendet
% display one of the training images and box labels.
while 1==0 %hasdata(preprocessedTrainingData)
data = read(preprocessedTrainingData);
I = data{1};
bbox = data{2};
annotatedImage = insertShape(I,'Rectangle',bbox);
annotatedImage = imresize(annotatedImage,4); % nur fuer Darstellung
figure(1)
imshow(annotatedImage)
pause(0.100)
end
% Auswahl der anchor boxes
% Infos dazu: https://de.mathworks.com/help/vision/ug/estimate-anchor-boxes-from-training-data.html
@ -164,7 +152,7 @@ I = imresize(I,inputSize(1:2));
[bboxes,scores] = detect(detector,I);
% Display the results.
sfigTitle = ""
sfigTitle = "";
if height(bboxes) > 0
I = insertObjectAnnotation(I,'rectangle',bboxes,scores);
sfigTitle = "Detected";
@ -198,31 +186,4 @@ grid on
title(sprintf('Average Precision = %.2f', ap))
% ----- Helper functions
% function data = augmentData(data)
% % Randomly flip images and bounding boxes horizontally.
% tform = randomAffine2d('XReflection',true);
% sz = size(data{1});
% rout = affineOutputView(sz,tform);
% data{1} = imwarp(data{1},tform,'OutputView',rout);
%
% % Sanitize box data, if needed.
% data{2} = helperSanitizeBoxes(data{2}, sz);
%
% % Warp boxes.
% data{2} = bboxwarp(data{2},tform,rout);
% end
%
% function data = preprocessData(data,targetSize)
% % Resize image and bounding boxes to targetSize.
% sz = size(data{1},[1 2]);
% scale = targetSize(1:2)./sz;
% data{1} = imresize(data{1},targetSize(1:2));
%
% % Sanitize box data, if needed.
% data{2} = helperSanitizeBoxes(data{2}, sz);
%
% % Resize boxes.
% data{2} = bboxresize(data{2},scale);
% end

@ -1,8 +1,4 @@
function data = augmentData_stepthree(data)
% Randomly flip images and bounding boxes horizontally.
tform = randomAffine2d('XReflection',true);
sz = size(data{1});
rout = affineOutputView(sz,tform);
% jitter
data{1} = jitterColorHSV(data{1},...
@ -11,11 +7,4 @@ data{1} = jitterColorHSV(data{1},...
Saturation=0.1,...
Brightness=0.2);
data{1} = imwarp(data{1},tform,'OutputView',rout);
% Sanitize box data, if needed.
data{2} = helperSanitizeBoxes(data{2}, sz);
% Warp boxes.
data{2} = bboxwarp(data{2},tform,rout);
end
end

@ -0,0 +1,66 @@
% Testscript um ein Bild aus den Daten durch das RCCN_NET mit direkter
% klassifizierung laufen zu lassen
close all;
clear;
%die netze mit besserer Erkennung _2
RCCN_NET = 'netDetectorResNet50_stepthree.mat';
inputSize = [224 224 3];
% first we need the data...
dataDir = 'Picturedata'; % Destination-Folder for provided (img) Data
zippedDataFile = 'PicturesResizedLabelsResizedSignsCutted.zip'; %Data provided by TA
grDataFile = 'signDatasetGroundTruth.mat';
func_setupData(dataDir, zippedDataFile, grDataFile);
%load data
grdata = load(grDataFile);
traficSignDataset = grdata.DataSet;
%Random Index
%shuffledIndices = randperm(height(traficSignDataset));
%testindx = shuffledIndices(1)
for testindx = 126:200
%testindx = 125;
% Bild einlesen
imgname = traficSignDataset.imageFilename{testindx}
I = imresize(imread(imgname),inputSize(1:2));
%RCCN-Detector laden
pretrained = load(RCCN_NET);
detector = pretrained.detector;
[bbox, score, label] = detect(detector, I);
sfigTitle = "";
bdetected = height(bbox) > 0;
if bdetected
I = insertObjectAnnotation(I,'rectangle',bbox,score);
sfigTitle = "Detected" + string(label);
return;
else
sfigTitle = "Not Detected";
end
end %end forschleife testindex
figure;
imshow(I);
annotation('textbox', [0.5, 0.2, 0.1, 0.1], 'String', sfigTitle)
%ggf. bild zuschneiden
if bdetected
icrop = imcrop(I , bbox);
figure;
imshow(icrop);
end
Loading…
Cancel
Save