added script for training alexnet

main
v-h 2 years ago
parent 29d422e3ab
commit cdb8ee20e8

@ -0,0 +1,54 @@
imds=imageDatastore( ...
'SignsCutted', ...
'IncludeSubfolders',true, ...
'LabelSource','foldernames');
fprintf("Anzahl Bilder: %d\n", length(imds.Labels));
rng(7);
[imdsTrain, idmsValidation] = splitEachLabel(imds,0.7,'randomized');
fprintf("Trainingsmenge Anzahl Elemente: %d Test(Validierungs)menge: %d\n", ...
length(imdsTrain.Labels), length(idmsValidation.Labels));
net=alexnet;
layersTransfer = net.Layers(1:end-3);
numClasses = numel(categories(imdsTrain.Labels));
layers = [
layersTransfer
fullyConnectedLayer(numClasses, ...
'WeightLearnRateFactor',20, ...
'BiasLearnRateFactor',20)
softmaxLayer
classificationLayer
];
options = trainingOptions('sgdm', ...
MiniBatchSize=10, ... % 10
MaxEpochs=6, ... % 6
InitialLearnRate=1e-4, ... % 1e-4
ValidationData=idmsValidation, ...
ValidationFrequency=3, ... % 3
ValidationPatience=10, ... % 5
Verbose=false, ... % false
Plots='training-progress');
netTransfer = trainNetwork(imdsTrain, layers, options);
[yPred, scores] = classify(netTransfer, idmsValidation);
idx=randperm(numel(idmsValidation.Files), 64);
figure
for i=1 : 64
subplot(8,8,i)
I = readimage(idmsValidation, idx(i));
imshow(I)
label = yPred(idx(i));
title(string(label));
end
accuracy = mean(yPred == idmsValidation.Labels);
fprintf("Genauigkeit: %3.2f\n", accuracy*100);
Loading…
Cancel
Save