You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
HA_DIGSIG/func_groundTruthFromLabelPic.m

121 lines
3.6 KiB
Matlab

function [ ] = func_groundTruthFromLabelPic( dataStorePicturePath, dataStoreLabelPath, outFile )
%
% erstellt us einem Picture-Datastore und einem Label-Datastore
% eine Groundtruth-Tabelle, wie sie z.B. in FasterRCNN.m
% benoetigt wird
%
% file von tas
% adaptiert als func 2022/12/28 vh
%
labelDS = imageDatastore(dataStoreLabelPath, 'IncludeSubfolders', true);
pictureDS = imageDatastore(dataStorePicturePath, 'IncludeSubfolders', true);
labelCount = numel(labelDS.Files)
pictureCount = numel(pictureDS.Files)
if labelCount ~= pictureCount
fprintf("!!!! Error: Die Anzahl der Bilder und Anzahl der LabelPicture sind ungleich -> Abbruch");
return
end
fprintf("-----------------------------------------------------------\n");
fprintf("Picture-Verzeichnis: %s\n", dataStorePicturePath)
fprintf("Anzahl Images: %d\n", pictureCount)
fprintf("Label-Verzeichnis: %s\n", dataStoreLabelPath)
fprintf("Anzahl Images: %d\n", labelCount)
fprintf("BE PATIENT.... \n")
fprintf("-----------------------------------------------------------\n");
% table anlegen
sz = [pictureCount 3];
varTypes = ["cellstr","cell","logical"];
varNames = ["imageFilename","sign","valid"];
DataSet = table('Size',sz,'VariableTypes',varTypes,'VariableNames',varNames);
rng(0)
shuffledIndices = randperm(pictureCount);
% los gehts
for i = 1:pictureCount
shuffeldIndex = shuffledIndices(i);
[imPic imPic_INFO]= readimage(pictureDS, shuffeldIndex);
[im_path imPic_name im_ext]=fileparts(imPic_INFO.Filename);
[imLabel imLabel_INFO]= readimage(labelDS, shuffeldIndex);
[im_path imLabel_name im_ext]=fileparts(imLabel_INFO.Filename);
% fprintf("picture: %s label: %s\n", imPic_name, imLabel_name);
box = [0,0,0,0]; %default if theres no labelimg
v = true;
if ~strcmp(imPic_name, imLabel_name)
fprintf("!!!! Error: zum Picture gibt es kein entsprechendes LabelPicture -> Abbruch");
imPic_name
imLabel_name
else
% LabelRegion aus Image ausschneiden
bw = imLabel;
s = regionprops(bw, 'BoundingBox');
box = cat(1, s.BoundingBox); % structure to matrix
box = round(box);
% falls mehrere Marker vorhanden sind, ignorieren wir den Datensatz
% das dürfte für das Training Region detection besser sein.
if (height(box) > 1)
v = false;
end
box = box(1,:);
if (numel(box) ~= 4)
fprintf("Boxkoordinaten nicht ok: %s %s\n", imPic_name, imLabel_name)
box
v = false
end
end
a = num2cell(box, 2);
%check for boxes which are somewhat wrong
if v
if (box(3) < 8.) ...
|| (box(4) < 8.) ...
|| (abs(box(3) - box(4)) > 2) ...
|| (box(1) + box(3) > 1024) ...
|| (box(2) + box(4) > 768)
fprintf("boxkoordinaten nicht i.o. %s (%d %d %d %d) \n", imLabel_name, box(1),box(2),box(3),box(4));
v = false;
end
end
DataSet(shuffeldIndex,:) = {imPic_INFO.Filename,a, v};
% display one of the training images and box labels.
if (shuffeldIndex == 4)
annotatedImage = insertShape(imPic,'Rectangle',box);
figure
imshow(annotatedImage)
end
end
%Die Daten sind teilweise nicht in Ordnung, am einfachsten ist natürlich
%die Einträge zu löschen, die nicht gut sind.
fprintf("Groundtruth hat %d eintraege vor der Bereinigung \n ", height(DataSet) )
toDelete = DataSet.valid == false;
DataSet(toDelete,:) = [];
DataSet.valid=[];
fprintf("Groundtruth hat %d eintraege nach der Bereinigung \n", height(DataSet) )
save(outFile, 'DataSet' );