You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

618 lines
24 KiB

/*
Copyright 2012 Kasper Skårhøj, SKAARHOJ, kasperskaarhoj@gmail.com
This file is part of the ATEM library for Arduino
The ATEM library is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
The ATEM library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with the ATEM library. If not, see http://www.gnu.org/licenses/.
*/
#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#include "ATEM.h"
/**
* Constructor, setting up IP address for the switcher (and local port to send packets from)
*/
ATEM::ATEM(IPAddress ip, uint16_t localPort){
// Set up Udp communication object:
EthernetUDP Udp;
_Udp = Udp;
_switcherIP = ip; // Set switcher IP address
_localPort = localPort; // Set local port (just a random number I picked)
_serialOutput = false;
}
/**
* Initiating connection handshake to the ATEM switcher
*/
void ATEM::connect() {
_localPacketIdCounter = 1; // Init localPacketIDCounter to 1;
_hasInitialized = false;
_Udp.begin(_localPort);
// Send connectString to ATEM:
// TODO: Describe packet contents according to rev.eng. API
byte connectHello[] = {
0x10, 0x14, 0x53, 0xAB, 0x00, 0x00, 0x00, 0x00, 0x00, 0x3A, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
_Udp.beginPacket(_switcherIP, 9910);
_Udp.write(connectHello,20);
_Udp.endPacket();
// Waiting for the ATEM to answer back with a packet 20 bytes long.
// According to packet analysis with WireShark, this feedback from ATEM
// comes within a few microseconds!
uint16_t packetSize = 0;
while(packetSize!=20) {
packetSize = _Udp.parsePacket();
}
// Read the response packet. We will only subtract the session ID
// According to packet analysis with WireShark, this feedback from ATEM
// comes a few microseconds after our connect invitation above. Two packets immediately follow each other.
// After approx. 200 milliseconds a third packet is sent from ATEM - a sort of re-sent because it gets impatient.
// And it seems that THIS third packet is the one we actually read and respond to. In other words, I believe that
// the ethernet interface on Arduino actually misses the first two for some reason!
while(!_Udp.available()){} // Waiting.... TODO: Implement some way to exit if there is no answer!
_Udp.read(_packetBuffer,20);
_sessionID = _packetBuffer[15];
// Send connectAnswerString to ATEM:
_Udp.beginPacket(_switcherIP, 9910);
// TODO: Describe packet contents according to rev.eng. API
byte connectHelloAnswerString[] = {
0x80, 0x0c, 0x53, 0xab, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00 };
_Udp.write(connectHelloAnswerString,12);
_Udp.endPacket();
}
/**
* Keeps connection to the switcher alive - basically, this means answering back to ping packages.
* Therefore: Call this in the Arduino loop() function and make sure it gets call at least 2 times a second
* Other recommendations might come up in the future.
*/
void ATEM::runLoop() {
// WARNING:
// It can cause severe timing problems using "slow" functions such as Serial.print*()
// in the runloop, in particular during "boot" where the ATEM delivers some 10-20 kbytes of system status info which
// must exit the RX-buffer quite fast. Therefore, using Serial.print for debugging in this
// critical phase will in it self affect program execution!
// Limit of the RX buffer of the Ethernet interface is another general issue.
// When ATEM sends the initial system status packets (10-20 kbytes), they are sent with a few microseconds in between
// The RX buffer of the Ethernet interface on Arduino simply does not have the kapacity to take more than 2k at a time.
// This means, that we only receive the first packet, the others seems to be discarded. Luckily most information we like to
// know about is in the first packet (and some in the second, the rest is probably thumbnails for the media player).
// It may be possible to bump up this buffer to 4 or 8 k by simply re-configuring the amount of allowed sockets on the interface.
// For some more information from a guy seemingly having a similar issue, look here:
// http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1282170842
// If there's data available, read a packet
uint16_t packetSize = _Udp.parsePacket();
if (_Udp.available() && packetSize !=0) {
// Read packet header of 12 bytes:
_Udp.read(_packetBuffer, 12);
// Read out packet length (first word), remote packet ID number and "command":
uint16_t packetLength = word(_packetBuffer[0] & B00000111, _packetBuffer[1]);
_lastRemotePacketID = word(_packetBuffer[10],_packetBuffer[11]);
uint8_t command = _packetBuffer[0] & B11111000;
boolean command_ACK = command & B00001000 ? true : false; // If true, ATEM expects an acknowledgement answer back!
// The five bits in "command" (from LSB to MSB):
// 1 = ACK, "Please respond to this packet" (using the _lastRemotePacketID). Exception: The initial 10-20 kbytes of Switcher status
// 2 = ?. Set during initialization? (first hand-shake packets contains that)
// 3 = "This is a retransmission". You will see this bit set if the ATEM switcher did not get a timely response to a packet.
// 4 = ? ("hello packet" according to "ratte", forum at atemuser.com)
// 5 = "This is a response on your request". So set this when answering...
if (packetSize==packetLength) { // Just to make sure these are equal, they should be!
// If a packet is 12 bytes long it indicates that all the initial information
// has been delivered from the ATEM and we can begin to answer back on every request
// Currently we don't know any other way to decide if an answer should be sent back...
if(!_hasInitialized && packetSize == 12) {
_hasInitialized = true;
if (_serialOutput) Serial.println("_hasInitialized=TRUE");
}
if (packetLength > 12) {
_parsePacket(packetLength);
}
// If we are initialized, lets answer back no matter what:
// TODO: "_hasInitialized && " should be inserted back before "command_ACK" but
// with Arduino 1.0 UDP library it has proven MORE likely that the initial
// connection is made if we ALWAYS answer the switcher back.
// Apparently the initial "chaos" of keeping up with the incoming data confuses
// the UDP library so that we might never get initialized - and thus never get connected
// So... for now this is how we do it:
if (command_ACK) {
if (_serialOutput) {
Serial.print("ACK, rpID: ");
Serial.println(_lastRemotePacketID, DEC);
}
_sendAnswerPacket(_lastRemotePacketID);
}
} else {
if (_serialOutput) {
Serial.print("ERROR: Packet size mismatch: ");
Serial.print(packetSize, DEC);
Serial.print(" != ");
Serial.println(packetLength, DEC);
}
// Flushing the buffer:
// TODO: Other way? _Udp.flush() ??
while(_Udp.available()) {
_Udp.read(_packetBuffer, 96);
}
}
}
}
/**
* If a package longer than a normal acknowledgement is received from the ATEM Switcher we must read through the contents.
* Usually such a package contains updated state information about the mixer
* Selected information is extracted in this function and transferred to internal variables in this library.
*/
void ATEM::_parsePacket(uint16_t packetLength) {
uint8_t idx; // General reusable index usable for keyers, mediaplayer etc below.
// If packet is more than an ACK packet (= if its longer than 12 bytes header), lets parse it:
uint16_t indexPointer = 12;
while (indexPointer < packetLength) {
// Read the length of segment (first word):
_Udp.read(_packetBuffer, 2);
uint16_t cmdLength = word(0, _packetBuffer[1]);
// If length of segment fits into buffer, lets read it, otherwise throw an error:
if (cmdLength>2 && cmdLength<=96) {
// Read the rest of the segment:
_Udp.read(_packetBuffer, cmdLength-2);
// Get the "command string", basically this is the 4 char variable name in the ATEM memory holding the various state values of the system:
char cmdStr[] = {
_packetBuffer[-2+4], _packetBuffer[-2+5], _packetBuffer[-2+6], _packetBuffer[-2+7], '\0' };
// Extract the specific state information we like to know about:
if(strcmp(cmdStr, "PrgI") == 0) { // Program Bus status
_ATEM_PrgI = _packetBuffer[-2+8+1];
if (_serialOutput) Serial.print("Program Bus: ");
if (_serialOutput) Serial.println(_ATEM_PrgI, DEC);
} else
if(strcmp(cmdStr, "PrvI") == 0) { // Preview Bus status
_ATEM_PrvI = _packetBuffer[-2+8+1];
if (_serialOutput) Serial.print("Preview Bus: ");
if (_serialOutput) Serial.println(_packetBuffer[-2+8+1], DEC);
} else
if(strcmp(cmdStr, "TlIn") == 0) { // Tally status for inputs 1-8
// Inputs 1-8, bit 0 = Prg tally, bit 1 = Prv tally. Both can be set simultaneously.
_ATEM_TlIn[0] = _packetBuffer[-2+8+2];
_ATEM_TlIn[1] = _packetBuffer[-2+8+3];
_ATEM_TlIn[2] = _packetBuffer[-2+8+4];
_ATEM_TlIn[3] = _packetBuffer[-2+8+5];
_ATEM_TlIn[4] = _packetBuffer[-2+8+6];
_ATEM_TlIn[5] = _packetBuffer[-2+8+7];
_ATEM_TlIn[6] = _packetBuffer[-2+8+8];
_ATEM_TlIn[7] = _packetBuffer[-2+8+9];
if (_serialOutput) Serial.println("Tally updated: ");
} else
if(strcmp(cmdStr, "Time") == 0) { // Time. What is this anyway?
} else
if(strcmp(cmdStr, "TrPr") == 0) { // Transition Preview
_ATEM_TrPr = _packetBuffer[-2+8+1] > 0 ? true : false;
if (_serialOutput) Serial.print("Transition Preview: ");
if (_serialOutput) Serial.println(_ATEM_TrPr, BIN);
} else
if(strcmp(cmdStr, "TrPs") == 0) { // Transition Position
_ATEM_TrPs_frameCount = _packetBuffer[-2+8+2]; // Frames count down
_ATEM_TrPs_position = _packetBuffer[-2+8+4]*256 + _packetBuffer[-2+8+5]; // Position 0-1000
} else
if(strcmp(cmdStr, "TrSS") == 0) { // Transition Style and Keyer on next transition
_ATEM_TrSS_KeyersOnNextTransition = _packetBuffer[-2+8+2] & B11111; // Bit 0: Background; Bit 1-4: Key 1-4
if (_serialOutput) Serial.print("Keyers on Next Transition: ");
if (_serialOutput) Serial.println(_ATEM_TrSS_KeyersOnNextTransition, BIN);
_ATEM_TrSS_TransitionStyle = _packetBuffer[-2+8+1];
if (_serialOutput) Serial.print("Transition Style: "); // 0=MIX, 1=DIP, 2=WIPE, 3=DVE, 4=STING
if (_serialOutput) Serial.println(_ATEM_TrSS_TransitionStyle, DEC);
} else
if(strcmp(cmdStr, "FtbS") == 0) { // Fade To Black State
_ATEM_FtbS_frameCount = _packetBuffer[-2+8+2]; // Frames count down
} else
if(strcmp(cmdStr, "DskS") == 0) { // Downstream Keyer state. Also contains information about the frame count in case of "Auto"
idx = _packetBuffer[-2+8+0];
if (idx >=0 && idx <=1) {
_ATEM_DskOn[idx] = _packetBuffer[-2+8+1] > 0 ? true : false;
if (_serialOutput) Serial.print("Dsk Keyer ");
if (_serialOutput) Serial.print(idx+1);
if (_serialOutput) Serial.print(": ");
if (_serialOutput) Serial.println(_ATEM_DskOn[idx], BIN);
}
} else
if(strcmp(cmdStr, "DskP") == 0) { // Downstream Keyer Tie
idx = _packetBuffer[-2+8+0];
if (idx >=0 && idx <=1) {
_ATEM_DskTie[idx] = _packetBuffer[-2+8+1] > 0 ? true : false;
if (_serialOutput) Serial.print("Dsk Keyer");
if (_serialOutput) Serial.print(idx+1);
if (_serialOutput) Serial.print(" Tie: ");
if (_serialOutput) Serial.println(_ATEM_DskTie[idx], BIN);
}
} else
if(strcmp(cmdStr, "KeOn") == 0) { // Upstead Keyer on
idx = _packetBuffer[-2+8+1];
if (idx >=0 && idx <=3) {
_ATEM_KeOn[idx] = _packetBuffer[-2+8+2] > 0 ? true : false;
if (_serialOutput) Serial.print("Upstream Keyer ");
if (_serialOutput) Serial.print(idx+1);
if (_serialOutput) Serial.print(": ");
if (_serialOutput) Serial.println(_ATEM_KeOn[idx], BIN);
}
} else
if(strcmp(cmdStr, "ColV") == 0) { // Color Generator Change
// Todo: Relatively easy: 8 bytes, first is the color generator, the last 6 is hsl words
} else
if(strcmp(cmdStr, "MPCE") == 0) { // Media Player Clip Enable
idx = _packetBuffer[-2+8+0];
if (idx >=0 && idx <=1) {
_ATEM_MPType[idx] = _packetBuffer[-2+8+1];
_ATEM_MPStill[idx] = _packetBuffer[-2+8+2];
_ATEM_MPClip[idx] = _packetBuffer[-2+8+3];
}
} else
if(strcmp(cmdStr, "AuxS") == 0) { // Aux Output Source
uint8_t auxInput = _packetBuffer[-2+8+0];
if (auxInput >=0 && auxInput <=2) {
_ATEM_AuxS[auxInput] = _packetBuffer[-2+8+1];
if (_serialOutput) Serial.print("Aux ");
if (_serialOutput) Serial.print(auxInput+1);
if (_serialOutput) Serial.print(" Output: ");
if (_serialOutput) Serial.println(_ATEM_AuxS[auxInput], DEC);
}
} else
if (_hasInitialized){ // All the rest...
if (_serialOutput) {
Serial.print("???? Unknown token: ");
Serial.print(cmdStr);
Serial.print(" : ");
}
for(uint8_t a=(-2+8);a<cmdLength-2;a++) {
if (_serialOutput) Serial.print((uint8_t)_packetBuffer[a], HEX);
if (_serialOutput) Serial.print(" ");
}
if (_serialOutput) Serial.println("");
}
indexPointer+=cmdLength;
} else {
// Error, just get out of the loop ASAP:
if (_serialOutput) Serial.print("ERROR: Command Size mismatch: ");
if (_serialOutput) Serial.print(cmdLength, DEC);
indexPointer = 2000;
// Flushing the buffer:
// TODO: Other way? _Udp.flush() ??
while(_Udp.available()) {
_Udp.read(_packetBuffer, 96);
}
}
}
}
/**
* Sending a regular answer packet back (tell the switcher that "we heard you, thanks.")
*/
void ATEM::_sendAnswerPacket(uint16_t remotePacketID) {
//Answer packet:
memset(_answer, 0, 12); // Using 12 bytes of answer buffer, setting to zeros.
_answer[2] = 0x80; // ??? API
_answer[3] = _sessionID; // Session ID
_answer[4] = remotePacketID/256; // Remote Packet ID, MSB
_answer[5] = remotePacketID%256; // Remote Packet ID, LSB
_answer[9] = 0x41; // ??? API
// The rest is zeros.
// Create header:
uint16_t returnPacketLength = 10+2;
_answer[0] = returnPacketLength/256;
_answer[1] = returnPacketLength%256;
_answer[0] |= B10000000;
// Send connectAnswerString to ATEM:
_Udp.beginPacket(_switcherIP, 9910);
_Udp.write(_answer,returnPacketLength);
_Udp.endPacket();
}
/**
* Sending a command packet back (ask the switcher to do something)
*/
void ATEM::_sendCommandPacket(char cmd[4], uint8_t commandBytes[16], uint8_t cmdBytes) {
if (cmdBytes <= 16) { // Currently, only a lenght up to 16 - can be extended, but then the _answer buffer must be prolonged as well (to more than 36)
//Answer packet preparations:
memset(_answer, 0, 36);
_answer[2] = 0x80; // ??? API
_answer[3] = _sessionID; // Session ID
_answer[10] = _localPacketIdCounter/256; // Remote Packet ID, MSB
_answer[11] = _localPacketIdCounter%256; // Remote Packet ID, LSB
// The rest is zeros.
// Command identifier (4 bytes, after header (12 bytes) and local segment length (4 bytes)):
int i;
for (i=0; i<4; i++) {
_answer[12+4+i] = cmd[i];
}
// Command value (after command):
for (i=0; i<cmdBytes; i++) {
_answer[12+4+4+i] = commandBytes[i];
}
// Command length:
_answer[12] = (4+4+cmdBytes)/256;
_answer[12+1] = (4+4+cmdBytes)%256;
// Create header:
uint16_t returnPacketLength = 10+2+(4+4+cmdBytes);
_answer[0] = returnPacketLength/256;
_answer[1] = returnPacketLength%256;
_answer[0] |= B00001000;
// Send connectAnswerString to ATEM:
_Udp.beginPacket(_switcherIP, 9910);
_Udp.write(_answer,returnPacketLength);
_Udp.endPacket();
_localPacketIdCounter++;
}
}
/********************************
*
* General Getter/Setter methods
*
********************************/
/**
* Setter method: If _serialOutput is set, the library may use Serial.print() to give away information about its operation - mostly for debugging.
*/
void ATEM::serialOutput(boolean serialOutput) {
_serialOutput = serialOutput;
}
/**
* Getter method: If true, the initial handshake and "stressful" information exchange has occured and now the switcher connection should be ready for operation.
*/
bool ATEM::hasInitialized() {
return _hasInitialized;
}
/**
* Returns last Remote Packet ID
*/
uint16_t ATEM::getATEM_lastRemotePacketId() {
return _lastRemotePacketID;
}
/********************************
*
* ATEM Switcher state methods
* Returns the most recent information we've
* got about the switchers state
*
********************************/
uint8_t ATEM::getProgramInput() {
return _ATEM_PrgI;
}
uint8_t ATEM::getPreviewInput() {
return _ATEM_PrvI;
}
boolean ATEM::getProgramTally(uint8_t inputNumber) {
// TODO: Validate that input number exists on current model! <8 at the moment.
return (_ATEM_TlIn[inputNumber-1] & 1) >0 ? true : false;
}
boolean ATEM::getPreviewTally(uint8_t inputNumber) {
// TODO: Validate that input number exists on current model! 1-8 at the moment.
return (_ATEM_TlIn[inputNumber-1] & 2) >0 ? true : false;
}
/********************************
*
* ATEM Switcher Change methods
* Asks the switcher to changes something
*
********************************/
void ATEM::changeProgramInput(uint8_t inputNumber) {
// TODO: Validate that input number exists on current model!
// On ATEM 1M/E: Black (0), 1 (1), 2 (2), 3 (3), 4 (4), 5 (5), 6 (6), 7 (7), 8 (8), Bars (9), Color1 (10), Color 2 (11), Media 1 (12), Media 2 (14)
uint8_t commandBytes[4] = {0, inputNumber, 0, 0};
_sendCommandPacket("CPgI", commandBytes, 4);
}
void ATEM::changePreviewInput(uint8_t inputNumber) {
// TODO: Validate that input number exists on current model!
uint8_t commandBytes[4] = {0, inputNumber, 0, 0};
_sendCommandPacket("CPvI", commandBytes, 4);
}
void ATEM::doCut() {
uint8_t commandBytes[4] = {0, 0xef, 0xbf, 0x5f}; // I don't know what that actually means...
_sendCommandPacket("DCut", commandBytes, 4);
}
void ATEM::doAuto() {
uint8_t commandBytes[4] = {0, 0x32, 0x16, 0x02}; // I don't know what that actually means...
_sendCommandPacket("DAut", commandBytes, 4);
}
void ATEM::fadeToBlackActivate() {
uint8_t commandBytes[4] = {0x00, 0x02, 0x58, 0x99};
_sendCommandPacket("FtbA", commandBytes, 4); // Reflected back from ATEM in "FtbS"
}
void ATEM::changeTransitionPosition(word value) {
if (value>0 && value<=1000) {
uint8_t commandBytes[4] = {0, 0xe4, value/256, value%256};
_sendCommandPacket("CTPs", commandBytes, 4); // Change Transition Position (CTPs)
}
}
void ATEM::changeTransitionPositionDone() { // When the last value of the transition is sent (1000), send this one too (we are done, change tally lights and preview bus!)
uint8_t commandBytes[4] = {0, 0xf6, 0, 0}; // Done
_sendCommandPacket("CTPs", commandBytes, 4); // Change Transition Position (CTPs)
}
void ATEM::changeTransitionPreview(bool state) {
uint8_t commandBytes[4] = {0x00, state ? 0x01 : 0x00, 0x00, 0x00};
_sendCommandPacket("CTPr", commandBytes, 4); // Reflected back from ATEM in "TrPr"
}
void ATEM::changeTransitionType(uint8_t type) {
if (type>=0 && type<=4) { // 0=MIX, 1=DIP, 2=WIPE, 3=DVE, 4=STING
uint8_t commandBytes[4] = {0x01, 0x00, type, 0x02};
_sendCommandPacket("CTTp", commandBytes, 4); // Reflected back from ATEM in "TrSS"
}
}
void ATEM::changeUpstreamKeyOn(uint8_t keyer, bool state) {
if (keyer>=1 && keyer<=4) { // Todo: Should match available keyers depending on model?
uint8_t commandBytes[4] = {0x00, keyer-1, state ? 0x01 : 0x00, 0x90};
_sendCommandPacket("CKOn", commandBytes, 4); // Reflected back from ATEM in "KeOn"
}
}
void ATEM::changeUpstreamKeyNextTransition(uint8_t keyer, bool state) { // Not supporting "Background"
if (keyer>=1 && keyer<=4) { // Todo: Should match available keyers depending on model?
uint8_t stateValue = _ATEM_TrSS_KeyersOnNextTransition;
if (state) {
stateValue = stateValue | (B10 << (keyer-1));
} else {
stateValue = stateValue & (~(B10 << (keyer-1)));
}
// TODO: Requires internal storage of state here so we can preserve all other states when changing the one we want to change.
uint8_t commandBytes[4] = {0x02, 0x00, 0x6a, stateValue & B11111};
_sendCommandPacket("CTTp", commandBytes, 4); // Reflected back from ATEM in "TrSS"
}
}
void ATEM::changeDownstreamKeyOn(uint8_t keyer, bool state) {
if (keyer>=1 && keyer<=2) { // Todo: Should match available keyers depending on model?
uint8_t commandBytes[4] = {keyer-1, state ? 0x01 : 0x00, 0xff, 0xff};
_sendCommandPacket("CDsL", commandBytes, 4); // Reflected back from ATEM in "DskP" and "DskS"
}
}
void ATEM::changeDownstreamKeyTie(uint8_t keyer, bool state) {
if (keyer>=1 && keyer<=2) { // Todo: Should match available keyers depending on model?
uint8_t commandBytes[4] = {keyer-1, state ? 0x01 : 0x00, 0xff, 0xff};
_sendCommandPacket("CDsT", commandBytes, 4);
}
}
void ATEM::doAutoDownstreamKeyer(uint8_t keyer) {
if (keyer>=1 && keyer<=2) { // Todo: Should match available keyers depending on model?
uint8_t commandBytes[4] = {keyer-1, 0x32, 0x16, 0x02}; // I don't know what that actually means...
_sendCommandPacket("DDsA", commandBytes, 4);
}
}
void ATEM::changeAuxState(uint8_t auxOutput, uint8_t inputNumber) {
// TODO: Validate that input number exists on current model!
// On ATEM 1M/E: Black (0), 1 (1), 2 (2), 3 (3), 4 (4), 5 (5), 6 (6), 7 (7), 8 (8), Bars (9), Color1 (10), Color 2 (11), Media 1 (12), Media 1 Key (13), Media 2 (14), Media 2 Key (15), Program (16), Preview (17), Clean1 (18), Clean 2 (19)
if (auxOutput>=1 && auxOutput<=3) { // Todo: Should match available aux outputs
uint8_t commandBytes[4] = {auxOutput-1, inputNumber, 0, 0};
_sendCommandPacket("CAuS", commandBytes, 4);
}
}
void ATEM::settingsMemorySave() {
uint8_t commandBytes[4] = {0, 0, 0, 0};
_sendCommandPacket("SRsv", commandBytes, 4);
}
void ATEM::settingsMemoryClear() {
uint8_t commandBytes[4] = {0, 0, 0, 0};
_sendCommandPacket("SRcl", commandBytes, 4);
}
void ATEM::changeColorValue(uint8_t colorGenerator, uint16_t hue, uint16_t saturation, uint16_t lightness) {
if (colorGenerator>=1 && colorGenerator<=2
&& hue>=0 && hue<=3600
&& saturation >=0 && saturation <=1000
&& lightness >=0 && lightness <= 1000
) { // Todo: Should match available aux outputs
uint8_t commandBytes[8] = {0x07, colorGenerator-1,
highByte(hue), lowByte(hue),
highByte(saturation), lowByte(saturation),
highByte(lightness), lowByte(lightness)
};
_sendCommandPacket("CClV", commandBytes, 8);
}
}
void ATEM::mediaPlayerSelectSource(uint8_t mediaPlayer, boolean movieclip, uint8_t sourceIndex) {
if (mediaPlayer>=1 && mediaPlayer<=2) { // TODO: Adjust to particular ATEM model... (here 1M/E)
uint8_t commandBytes[12];
memset(commandBytes, 0, 12);
commandBytes[1] = mediaPlayer-1;
if (movieclip) {
commandBytes[0] = 4;
if (sourceIndex>=1 && sourceIndex<=2) {
commandBytes[4] = sourceIndex-1;
}
} else {
commandBytes[0] = 2;
if (sourceIndex>=1 && sourceIndex<=32) {
commandBytes[3] = sourceIndex-1;
}
}
commandBytes[9] = 0x10;
_sendCommandPacket("MPSS", commandBytes, 12);
// For some reason you have to send this command immediate after (or in fact it could be in the same packet)
// If not done, the clip will not change if there is a shift from stills to clips or vice versa.
uint8_t commandBytes2[8] = {0x01, mediaPlayer-1, movieclip?2:1, 0xbf, movieclip?0x96:0xd5, 0xb6, 0x04, 0};
_sendCommandPacket("MPSS", commandBytes2, 8);
}
}