|
|
|
@ -1,5 +1,7 @@
|
|
|
|
|
% Testscript um ein Bild aus den Daten durch das RCCN_NET mit direkter
|
|
|
|
|
% Testscript um 100 Bilder durch das RCCN_NET mit direkter
|
|
|
|
|
% klassifizierung laufen zu lassen
|
|
|
|
|
% 2022-01-17
|
|
|
|
|
% leider erkennt das Netz nichts. :(
|
|
|
|
|
|
|
|
|
|
close all;
|
|
|
|
|
clear;
|
|
|
|
@ -19,13 +21,13 @@ grdata = load(grDataFile);
|
|
|
|
|
traficSignDataset = grdata.DataSet;
|
|
|
|
|
|
|
|
|
|
%Random Index
|
|
|
|
|
%shuffledIndices = randperm(height(traficSignDataset));
|
|
|
|
|
shuffledIndices = randperm(height(traficSignDataset));
|
|
|
|
|
%testindx = shuffledIndices(1)
|
|
|
|
|
for testindx = 126:200
|
|
|
|
|
for testindx = 1:100
|
|
|
|
|
%testindx = 125;
|
|
|
|
|
|
|
|
|
|
% Bild einlesen
|
|
|
|
|
imgname = traficSignDataset.imageFilename{testindx}
|
|
|
|
|
imgname = traficSignDataset.imageFilename{shuffledIndices(testindx)}
|
|
|
|
|
I = imresize(imread(imgname),inputSize(1:2));
|
|
|
|
|
|
|
|
|
|
%RCCN-Detector laden
|
|
|
|
@ -34,7 +36,6 @@ detector = pretrained.detector;
|
|
|
|
|
|
|
|
|
|
[bbox, score, label] = detect(detector, I);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sfigTitle = "";
|
|
|
|
|
bdetected = height(bbox) > 0;
|
|
|
|
|
if bdetected
|
|
|
|
|